Gr. 2 - Understanding Structures and Mechanisms

Movement

Inertia Zoom Ball

Specific Expectations:
2.2 Investigate and describe different kinds of movement

2.4 Use technological problem-solving skills and knowledge and skills acquired from previous investigation, to design, build, and test a mechanism that includes on or more simple machines.

2.5 Use appropriate science and technology vocabulary, including push, pull, beside, above, wheel, axle, and inclined plane, in oral and written communication.

3.1 Describe different ways in which objects move.

3.2 Identify ways in which the position of an object can be changed.

Big Idea (for lesson):
Students explore a law of motion (Inertia; Newton’s First Law) by building and playing with an Inertia Zoom Ball.

Accommodations:
- Increase time
- Visual Aids
- Manipulatives
- Chunking
- Step-by-Step
- Scaffolding
- Copy of Notes
- Student Grouping

Differentiated Instruction:
- Content: Use demo to show the content as you offer verbal descriptions.
- Process: Have students work in pairs and support each other if physical impediments exist.
- Product: Have students verbalize their understanding or write in a journal.
- Other:

Bloom’s Taxonomy:
- Knowledge
- Comprehension
- Application
- Analysis
- Synthesis
- Evaluation

Multiple Intelligence:
- Verbal/Linguistic
- Logical/Mathematical
- Visual/Spatial
- Bodily/Kinesthetic
- Naturalist
- Musical/Rhythmic
- Interpersonal
- Intrapersonal

Delivering The Lesson:

<table>
<thead>
<tr>
<th>Portion & Timing</th>
<th>Grouping:</th>
<th>Introduction:</th>
<th>Materials:</th>
</tr>
</thead>
</table>
| Minds On: 5 mins | W □ S □ I □ | To introduce the idea of people using energy, the teacher could perform the following hook: -Take a silky piece of material (with no hem) large | -Silk cloth
-Objects with some |
Gr. 2 - Understanding Structures and Mechanisms

Movement

<table>
<thead>
<tr>
<th>Action: 25 mins</th>
<th>W</th>
<th>S</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Simple tell the class that you are going to be exploring a property of motion called Inertia that day, and you’re going to show them an example.
- Gather the cloth in your hands and pull straight out. The objects shouldn’t be rattled much, if at all.

Teachers should now explain what happened in this demonstration:
- It’s a law of motion that something will stay put unless a force is put on it.
- How did I move the cloth? *(Answer: I used the energy in my arms to pull the cloth out very quickly)*
- Why didn’t the objects on the table move? *(Answer: There is little friction due to the material, and thus no force to move the dishes.)*

Have students follow the instructions on the handout to build an Inertia Zoom Ball in pairs.

As the students build and test their Inertia Zoom Ball, ask them some questions:
- How do you send the ball to the other player? *(Answer: by jerking the strings apart and sending energy from me to the ball).*
- Why does the ball sometimes slow down? *(Answer: the string and the ball rub, which means frictions slows it down.)*
- Feel the cord, and listen as you play. What do you notice? *(Answer: The cord feels warm because of the rubbing, and you can hear the movement of the ball. The movement energy is being transferred to sound and heat energy, slowing it down a bit.)*
- How is this activity similar to the one done at the start of the class? *(Answer: This activity demonstrates Newton’s First Law of Motion: without a force like a push or a pull, an object won’t move. If an object is moving, it won’t stop moving in a straight line unless forced to change by another push or pull.)*

Have students work on the handout, which outlines visual everyday examples of inertia at
Consolidate: 10 mins

<table>
<thead>
<tr>
<th>W</th>
<th>S</th>
<th>I</th>
</tr>
</thead>
</table>

Show the Inertia Beads video. Remind students that inertia keeps things that are at rest not moving. Ask them what is happening in this video? *(Answer: Inertia also keeps things moving that are already moving, like the beads in the video).*

Show the demo in person, if desired.

Another option is to mimic the tablecloth hook at the start of the lesson with something that students can try:
- Give students a cup, card, and coin. Have them place the card over the mouth of the cup, and put the coin on the middle of the cup. If the paper is pulled quickly and straight out, the coin will fall straight down into the cup.

-Large beaker
-Long strand of beads
-Cup
-Coin
-Card