Understanding Structures and Mechanisms Simple Machine: Levers

Specific Expectations

Grade 2 – Movement: 1.1 assess the impact on society and the environment of simple machines that allow movement; 2.2 investigate and describe different kinds of movement; 2.3 investigate the structure and function of simple machines; 2.4 use technological problem-solving skills (see page 16), and knowledge and skills acquired from previous investigations, to design, build, and test a mechanism that includes one or more simple machines; 3.1 describe different ways in which objects move (*e.g., turning, spinning, swinging, bouncing, vibrating, rolling*); 3.2 identify ways in which the position of an object can be changed (*e.g., by pushing, by pulling, by dropping*); 3.3 identify the six basic types of simple machines – lever; inclined plane; pulley; wheel and axle, including gear; screw; and wedge – and give examples of ways in which each is used in daily life to make tasks easier; 3.4 describe how each type of simple machine allows humans to move objects with less force than otherwise would be needed; 3.5 identify simple machines used in devices that move people

Grade 3 – Strong and Stable Structures: 2.3 investigate, through experimentation, the effects of pushing, pulling, and other forces on the shape and stability of simple structures; **3.1** define a structure as a supporting framework, with a definite size, shape, and purpose, that holds a load

Potential Specific Expectations with minor extensions to the lesson:

Grade 5 – Forces Acting on Structures and Mechanisms: 2.2 measure and compare, quantitatively and/or qualitatively, the force required to move a load (*e.g., to lift a book, to open a drawer*) using different mechanical systems (*e.g., different pulley systems, a lever, a gear system*), and describe the relationship between the force required and the distance over which the force moves; **2.5** use appropriate science and technology vocabulary, including *tension, compression, torque, system*, and *load*, in oral and written communication; **3.3** explain the advantages and disadvantages of different types of mechanical systems

Grade 8 – Systems in Action: 2.2 investigate the work done in a variety of everyday activities and record the findings quantitatively; **2.3** use scientific inquiry/experimentation skills (see page 12) to investigate mechanical advantage in a variety of mechanisms and simple machines; **2.6** use appropriate science and technology vocabulary, including *mechanical advantage, input, output, friction, gravity, forces,* and *efficiency,* in oral and written communication; **3.2** Identify the purpose, inputs, and outputs of various systems; **3.3** Identify the various processes and components of a system that allow it to perform its function efficiently and safely; **3.5** understand and use the formula work = force × distance ($W = F \times d$) to establish the relationship between work, force, and distance moved parallel to the force in simple systems; **3.6** calculate the mechanical advantage (MA = force needed without a simple machine divided by force needed with a simple machine) of various mechanical systems

Big Ideas (for lesson):

Students will understand why people create and use simple machines to make tasks easier to perform (*mechanical advantage*)

Students will learn how levers function and how they are used to move heavy objects Students will see how levers are used effectively in everyday life

Accommodations:	Differentiated Instruction:			
🗵 Increase time	Content: Use demonstrations throughout			
🗵 Visual Aids	verbal instruction to help visual learners.			
Manipulatives	Process: Students will work in pairs or groups to			
🗵 Chunking	support each other if limitations or impediments			
🖾 Step-by-Step	exist.			
⊠ Scaffolding	Product: Students may demonstrate their			
⊠ Copy of Notes	learning verbally, visually, or by written means.			
⊠ Student Grouping	□ Other:			
	Multiple Intelligence:			

Bloom's Taxonomy:	⊠ Verbal/Linguistic
🖾 Knowledge	☑ Logical/Mathematical
Comprehension	⊠ Visual/Spatial
☑ Application	Bodily/Kinesthetic
🛛 Analysis	□ Naturalist
🖾 Synthesis	□ Musical/Rhythmic
🛛 Evaluation	☑ Interpersonal
	⊠ Intrapersonal

Teachers Notes:

- This lesson is accompanied by a supplementary PowerPoint, "Levers (powerpoint)", and a worksheet, "Levers (worksheet)"
- The use of simple machine kits can be found throughout the lesson it is recommended that these manipulatives be used to increase the experience and understanding of the students
 - your school might have access to a set of levers you can use for this lesson
 - if this is not available, you can purchase simple machines sets here:
 - http://www.pitsco.com/Grades_3-5/Kits/Simple_Machines_Set
 - http://www.learningresources.com/product/simple+machines+set.do
 - if this is still not an option, you can build your own simple machines
 - see below for examples:
 - http://www.ehow.com/info_7969543_homemade-simple-machines-kids.html
- Extensions to the lesson should be done if it is to be used at the grade 5 or 8 levels
 - The material covered by these lessons is strongly emphasized at the Grade 2 level the more complex concepts that arise at later grade levels can be situated within the lesson
 - i.e. calculating force and mechanical advantage can be added into the lesson
- Resources for teaching and learning about simple machines can be found here:
 - Brainpop, <u>http://educators.brainpop.com/bp-jr-topic/simple-machines/</u>
 - Bill Nye The Science Guy: Simple Machines https://www.youtube.com/watch?v=rRjCQGa_HCE
- The font used for the handout is called <u>Dyslexie</u>. It is designed to help dyslexics read, but it is a very easy to comprehend font which will aid all readers.

Delivering the Lesson

Portion &	Grouping:		ıg:	Introduction:	Materials
Timing					
Minds On:	W	S	Ι	Teacher introduces levers to students	- Lever set to
5 minutes	\boxtimes			- (ppt slides 1-3)	provide
				Perform demonstration for class by lifting various	example to
				weights; Gizmos simulation can be used as well	students
				- Discuss the <u>Mocomi</u> video	- projector
					technology
Action:	W	S	Ι	Proceed through "Levers (powerpoint)"	
30 minutes	\boxtimes	\boxtimes	\boxtimes	- "Levers (worksheet)" can be followed along and	- Lever sets to
				filled in by students	allow students
				- Answer questions about the simple machine as the	to explore the
				lesson proceeds	use and
				- Students should highlight/underline important	function of
				vocabulary words	levers
				Activity:	
				- Separate students into groups or pairs	
				- Allow students to build and operate different lever	
				systems (different classes and lengths of beam)	
				- Have them record their observations by drawing	
				and labelling diagrams of all the different levers they	
				can create	
				- See which group can create the most efficient and	
				effective levers (can lift the most weight easily)	
Consolidate:	W	S	Ι	Conclude lesson by taking up worksheet – ensure	
5 minutes	\boxtimes	\boxtimes		each student has filled in all the appropriate	
				information	
				- Answer any remaining questions on levers	

References:

Mocomi; http://mocomi.com/

Teach Engineering;

https://www.teachengineering.org/view_lesson.php?url=collection/cub_/lessons/cub_simple/c ub_simple_lesson01.xml

ExploreLearning Gizmos;

https://www.explorelearning.com/index.cfm?method=cResource.dspResourcesForCourse&CourseBorCou

Wikipedia; https://en.wikipedia.org/?title=Simple_machine

All images from Google image search, Educational websites, and stock photos All videos found on YouTube for educational purposes